AIRCRAFT
ELECTRICAL WIRE
Wire Manufacturers Perspective

Tyco Electronics (Raychem)
Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE

• Important Wire Performance Characteristics
• Major Airframe Wire Type Usage
• Priority of Performance Requirements
• Wire Aging Considerations
• FAA - ATSRAC Inspection Data
• Wire Manufacturer Product Tests

Tyco Electronics, Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE

Some Reference Points

• A large commercial transport aircraft such as the 747 uses approximately 750,000 feet (about 140 miles) of wire, weighing about 3,500 pounds.

• All aircraft designs are weight critical.

• Since wire contributes significantly to the total weight of the aircraft it has received a great deal of attention for weight reduction.

• The two available approaches to reduce weight of wiring are:
 – reduce the weight by developing wires with higher temperature rating, which allows less copper content
 – reduce the weight of the insulation by developing better materials that can safely be used in smaller thickness

• Since 1950 the total wire weight reduction through improved insulation materials alone has been of the order of 25%.
Important Wire Performance Characteristics

• **Aircraft Design**
 – Weight
 – Size
 – Compatibility with anticipated aircraft operating environment

• **Aircraft Manufacture**
 – Ease of preparation: Easy to cut, strip, mark, terminate, etc.
 – Ease of installation: Flexibility, for ease of routing and handling
 – Compatibility with manufacturing environment: Compatible with chemicals/cleaners used during wire harness manufacture

• **Operation**
 – Withstand abrasion and other mechanical abuse
 – Maintain circuit integrity in case of current overload
 – Not propagate flame/fire
 – No hazard due to arc tracking susceptibility
 – Not generate large amounts of smoke if overheated or involved in a fire
 – Withstand influence of moisture, UV, fluids, cleaning compounds, etc.

Tyco Electronics, Walter Cinibulk
Major Airframe Wire Type Usage

Wire evolution has been driven by weight reductions

PVC/Glass/Nylon
- Installations: Boeing: 707, 727, 737
- Douglas: DC-8, DC-9

1950
- Weight: 6.8 lbs.
 - 1000 ft; 20 AWG
- Max Temp: 105°C
- Insulation: 25 mils

1964
- Weight: 5.5 lbs.
 - 1000 ft; 20 AWG
- Max Temp: 150°C
- Insulation: 15 mils

XL-PVDF
XL-Polyalkane

44A
- Installations: Boeing 747
 - GD F-111
 - Grumman E-2, A-6
 - Lockheed: C-5, C-130, C-140
 - Fairchild A-10
 - Many General Aviation A/C
Major Airframe Wire Type Usage

Wire evolution has been driven by weight reductions

1966
Weight: 4.6 lbs.
1000 ft; 20 AWG
Max Temp: 200 C
Insulation: 8.4 mils

Kapton
Installations: Lockheed L-1011, Douglas MD-80, Boeing 727, 737, 757,
Grumman F-14, McDonnell F-15, GD F-16

1977
Weight: 4.9 lbs.
1000 ft; 20 AWG
Max Temp: 200 C
Insulation: 10 mils

XL-ETFEXL-ETFEXL-ETFEXL-ETFEXL-ETFEXL-ETFEXL-ETFE

55A
Installations: Boeing 747, 767, 777
US Navy A/C, some US AF & Army A/C
Several satellite & other space programs

1991
Weight: 4.5 lbs.
1000 ft; 20 AWG
Max Temp: 260 C
Insulation: 8 mils

TKT Composite (Teflon/Kapton/Teflon)
Installations: Boeing 737, 757
Partially on some defense A/C

PTFETape

1992
Weight: 4.5 lbs.
1000 ft; 20 AWG
Max Temp: 200 C
Insulation: 8 mils

55PC
Installations: Boeing 747, 767, 777 & several General Aviation A/C

Tyco Electronics, Walter Cinibulk

Kapton, Teflon, and Tefzel are trade marks of the DuPont Corporation
Tyco Electronics 260 C Aircraft Electrical Wire

March 2002
Weight: 5.4 lbs.
1000 ft; 20 AWG
Max Temp: 260 C
Insulation: 12 mils

Mica Tape with Perfluoropolymer Jacket
-Circuit Separation Wire - Thick Wall

October 2002
Weight: 4.5 lbs.
1000 ft; 20 AWG
Max Temp: 260 C
Insulation: 6 mils

Mica Tape with Perfluoropolymer Jacket
-Airframe Wire-
AIRCRAFT ELECTRICAL WIRE

Performance Requirements Priority as Dictated by our customers (QFD)

<table>
<thead>
<tr>
<th>RANK</th>
<th>PROPERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arc-Track Resistance</td>
</tr>
<tr>
<td>2</td>
<td>Flammability</td>
</tr>
<tr>
<td>3</td>
<td>Toxicity of Smoke</td>
</tr>
<tr>
<td>4</td>
<td>Smoke Density</td>
</tr>
<tr>
<td>5</td>
<td>Wire-Frame Abrasion</td>
</tr>
<tr>
<td>6</td>
<td>Cut-thru at rated Temp</td>
</tr>
<tr>
<td>7</td>
<td>Reduced Weight</td>
</tr>
<tr>
<td>8</td>
<td>Hydrolysis Resistance</td>
</tr>
<tr>
<td>9</td>
<td>Cut-thru at Room Temp</td>
</tr>
<tr>
<td>10</td>
<td>Wire-Wire Abrasion</td>
</tr>
</tbody>
</table>

Tyco Electronics, Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE

Fire Hazard Performance

Importance Ranking

• Arc Tracking
• Flammability
• Toxicity
• Smoke

Tyco Electronics, Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE
Customer Manufacturing Requirements

• Dual Layer
• Stripping
• Toughness / Flexibility
• Surface properties:
 – marking contrast
 – smooth exterior
 – adhesion to labels
 – friction for grip/handling
 – bond or seal to potting material

Tyco Electronics, Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE

Practical Considerations of Aging

Fatigue through
Bending, vibration,
scrape, flexure

Chemical or hydrolytic attack

Thermal degradation

UV or Sunlight

Wire of reduced performance
FAA - ATSRAC
(Aging Transport Systems Rulemaking Advisory Committee)
Intrusive Inspection Report

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>A300</th>
<th>DC-9</th>
<th>747</th>
<th>DC-9</th>
<th>L1011</th>
<th>DC-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection</td>
<td>9/99</td>
<td>12/99</td>
<td>2/00</td>
<td>5/00</td>
<td>6/00</td>
<td>6/00</td>
</tr>
<tr>
<td>Hours</td>
<td>39,713</td>
<td>74,558</td>
<td>100,241</td>
<td>66,801</td>
<td>63,618</td>
<td>61,334</td>
</tr>
<tr>
<td>Cycles</td>
<td>27,078</td>
<td>100,017</td>
<td>20,348</td>
<td>75,446</td>
<td>26,256</td>
<td>18,818</td>
</tr>
<tr>
<td>Wire Type</td>
<td>Polyimide</td>
<td>PVC/G/N</td>
<td>Poly-X</td>
<td>PVC/G/N</td>
<td>Polyimide</td>
<td>XL-ETFE</td>
</tr>
</tbody>
</table>

Page 8, Table 1.1: Subject Aircraft Data
Tyco Electronics, Walter Cinibulk
FAA - ATSRAC

Intrusive Inspection Report Summary

Breaches per 1000' by Insulation Type

Page 24, Figure 3.2: Aircraft Specific Findings per 1000 feet of wire

Page 25, Figure 3.4: Wire-Type Specific Findings per 1000 feet of wire

Tyco Electronics, Walter Cinibulk
AIRCRAFT ELECTRICAL WIRE

Typical Wire Test Requirements
(Customer performance/test requirements)

• **Dimensional** - Size & Weight

• **Electrical** - Resistance, Voltage Rating, IR

• **Thermal** - Thermal Aging, Low Temperature Flexibility

• **Mechanical** - Cross-Wire Rub, Scrape Abrasion, Cut-Thru

• **Flammability** - Arc Track Resistance, Flame Resistance, Smoke, Toxicity

• **Chemical** - Diameter Swell, Chemical Attack

• **Handling** - Laser Markability, Stripping
We are committing to continue:

• Manufacturing to the highest performance and quality standards

• To globally support all of our electrical interconnect products

• To invest in new technologies

• The production of Spec55 XL-ETFE

Tyco Electronics (Raychem)